Join the Most Relevant JEE Main 2025 Test Series & get 99+ percentile! Join Now
Search any question & find its solution
Question: Answered & Verified by Expert
$\int_0^1 \frac{e^{-x}}{1+e^{-x}} d x=$
MathematicsDefinite IntegrationJEE Main
Options:
  • A $\log \left(\frac{1+e}{e}\right)-\frac{1}{e}+1$
  • B $\log \left(\frac{1+e}{2 e}\right)-\frac{1}{e}+1$
  • C $\log \left(\frac{1+e}{2 e}\right)+\frac{1}{e}-1$
  • D None of these
Solution:
2995 Upvotes Verified Answer
The correct answer is: $\log \left(\frac{1+e}{2 e}\right)-\frac{1}{e}+1$
Put $1+e^{-x}=t \Rightarrow-e^{-x} d x=d t$, then we have
$\begin{aligned} I & =\int_2^{1+\frac{1}{e}} \frac{(t-1)(-d t)}{t}=\int_2^{1+\frac{1}{e}}\left(\frac{1}{t}-1\right) d t \\ & =\left[\log _e t-t\right]_2^{1+\frac{1}{e}}=\log _e\left(1+\frac{1}{e}\right)-\left(1+\frac{1}{e}\right)-\log _e 2+2 \\ & =\log _\theta\left(\frac{e+1}{2 e}\right)-\frac{1}{e}+1\end{aligned}$

Looking for more such questions to practice?

Download the MARKS App - The ultimate prep app for IIT JEE & NEET with chapter-wise PYQs, revision notes, formula sheets, custom tests & much more.