Join the Most Relevant JEE Main 2025 Test Series & get 99+ percentile! Join Now
Search any question & find its solution
Question: Answered & Verified by Expert
$\int_0^1 \sqrt{\frac{1-x}{1+x}} d x=$
MathematicsDefinite IntegrationMHT CETMHT CET 2022 (07 Aug Shift 2)
Options:
  • A $\frac{\pi}{4}+1$
  • B $\frac{\pi}{2}+1$
  • C $\frac{\pi}{4}-1$
  • D $\frac{\pi}{2}-1$
Solution:
1072 Upvotes Verified Answer
The correct answer is: $\frac{\pi}{2}-1$
$\begin{aligned} & \int_0^1 \sqrt{\frac{1-x}{1+x}} d x=\int_0^1 \frac{1-x}{\sqrt{1-x^2}} d x=\int_0^1 \frac{1}{\sqrt{1-x^2}} d x+\frac{1}{2} \int_0^1 \frac{-2 x}{\sqrt{1-x^2}} d x \\ & =\left[\sin ^{-1} x\right]_0^1+\left[\sqrt{1-x^2}\right]_0^1 \\ & =\sin ^{-1}(1)-\sin ^{-1}(0)+\sqrt{1-1^2}-\sqrt{1-0^2} \\ & =\frac{\pi}{2}-0+0-1 \\ & =\frac{\pi}{2}-1\end{aligned}$

Looking for more such questions to practice?

Download the MARKS App - The ultimate prep app for IIT JEE & NEET with chapter-wise PYQs, revision notes, formula sheets, custom tests & much more.