Search any question & find its solution
Question:
Answered & Verified by Expert
$\int_0^1 \frac{8 \log (1+x)}{1+x^2} \mathrm{~d} x=$
Options:
Solution:
2450 Upvotes
Verified Answer
The correct answer is:
$\pi \log 2$
$\begin{aligned} & \text { let } x=\tan \theta \\ & \Rightarrow \mathrm{d} x=\sec ^2 \theta \mathrm{d} \theta \text {, when } x=0, \theta=0 \text {; when } x=1 \text {, } \\ & \theta=\frac{\pi}{4}\end{aligned}$
$I=\int_0^{\frac{\pi}{4}} 8 \frac{\log (1+\tan \theta)}{1+\tan ^2 \theta} \cdot \sec ^2 \theta d \theta=\int_0^{\frac{\pi}{4}} 8 \log (1+\tan \theta) \mathrm{d} \theta \quad \ldots \ldots(\mathrm{i})$
$\Rightarrow \mathrm{I}=\int_0^{\frac{\pi}{4}} 8 \log \left(1+\tan \left(\frac{\pi}{4}-\theta\right) \mathrm{d} \theta\left[\because \int_0^a f(x) \mathrm{d} x=\int_0^a f(a-x) \mathrm{d} x\right]\right.$
$\left[\because \tan \left(\frac{\pi}{4}-\theta\right)=\frac{1-\tan \theta}{1+\tan \theta}\right]$
from (i) $+($ ii $)$
$\begin{aligned}
& 2 I=\int_0^{\pi / 4} 8 \log \left\{(1+\tan \theta) \times \frac{2}{(1+\tan \theta)}\right\} d \theta \\
& \Rightarrow 2 \mathrm{I}=8 \int_0^{\pi / 4} \log 2 \mathrm{~d} \theta=8 \log 2[\theta]_0^{\pi / 4}=8 \log 2 \times \frac{\pi}{4}
\end{aligned}$
$\Rightarrow \mathrm{I}=\pi \log 2$
$I=\int_0^{\frac{\pi}{4}} 8 \frac{\log (1+\tan \theta)}{1+\tan ^2 \theta} \cdot \sec ^2 \theta d \theta=\int_0^{\frac{\pi}{4}} 8 \log (1+\tan \theta) \mathrm{d} \theta \quad \ldots \ldots(\mathrm{i})$
$\Rightarrow \mathrm{I}=\int_0^{\frac{\pi}{4}} 8 \log \left(1+\tan \left(\frac{\pi}{4}-\theta\right) \mathrm{d} \theta\left[\because \int_0^a f(x) \mathrm{d} x=\int_0^a f(a-x) \mathrm{d} x\right]\right.$
$\left[\because \tan \left(\frac{\pi}{4}-\theta\right)=\frac{1-\tan \theta}{1+\tan \theta}\right]$
from (i) $+($ ii $)$
$\begin{aligned}
& 2 I=\int_0^{\pi / 4} 8 \log \left\{(1+\tan \theta) \times \frac{2}{(1+\tan \theta)}\right\} d \theta \\
& \Rightarrow 2 \mathrm{I}=8 \int_0^{\pi / 4} \log 2 \mathrm{~d} \theta=8 \log 2[\theta]_0^{\pi / 4}=8 \log 2 \times \frac{\pi}{4}
\end{aligned}$
$\Rightarrow \mathrm{I}=\pi \log 2$
Looking for more such questions to practice?
Download the MARKS App - The ultimate prep app for IIT JEE & NEET with chapter-wise PYQs, revision notes, formula sheets, custom tests & much more.