Join the Most Relevant JEE Main 2025 Test Series & get 99+ percentile! Join Now
Search any question & find its solution
Question: Answered & Verified by Expert
$\int_0^\pi \sqrt{1+4 \sin ^2 \frac{x}{2}+4 \sin \frac{x}{2}} d x$ is equal to
MathematicsDefinite IntegrationTS EAMCETTS EAMCET 2021 (06 Aug Shift 2)
Options:
  • A $\pi$
  • B $\pi+2$
  • C $\pi+4$
  • D 0
Solution:
2444 Upvotes Verified Answer
The correct answer is: $\pi+4$
$I=\int_0^\pi \sqrt{1+4 \sin ^2(x / 2)+4 \sin (x / 2)} d x$
$\begin{aligned} & \because \quad\left(1+2 \sin \frac{x}{2}\right)^2=1+4 \sin ^2 x / 2+4 \sin (x / 2) \\ & \therefore \quad I=\int_0^\pi(1+2 \sin x / 2) d x=\left[x-\frac{2}{1 / 2} \cos \frac{x}{2}\right]_0^\pi \\ & \quad=[x-4 \cos (x / 2)]_0^\pi=[\pi-4.0-0+4]=\pi+4\end{aligned}$

Looking for more such questions to practice?

Download the MARKS App - The ultimate prep app for IIT JEE & NEET with chapter-wise PYQs, revision notes, formula sheets, custom tests & much more.