Join the Most Relevant JEE Main 2025 Test Series & get 99+ percentile! Join Now
Search any question & find its solution
Question: Answered & Verified by Expert
$\int_{0}^{1} x(1-x)^{5} d x=$
MathematicsDefinite IntegrationMHT CETMHT CET 2020 (19 Oct Shift 1)
Options:
  • A $\frac{1}{7}$
  • B $-\frac{1}{42}$
  • C $\frac{1}{42}$
  • D $\frac{1}{6}$
Solution:
1964 Upvotes Verified Answer
The correct answer is: $\frac{1}{42}$
(C)
$\begin{aligned} \text { Let } I &=\int_{0}^{1} x(1-x)^{5} d x \\ \therefore I &=\int_{0}^{1}(1-x)(1-(1-x))^{5} d x=\int_{0}^{1}(1-x) x^{5} d x=\int\left(x^{5}-x^{6}\right) d x \\ &=\left[\frac{x^{6}}{6}-\frac{x^{7}}{7}\right]_{0}^{1}=\frac{1}{6}-\frac{1}{7}=\frac{1}{42} \end{aligned}$

Looking for more such questions to practice?

Download the MARKS App - The ultimate prep app for IIT JEE & NEET with chapter-wise PYQs, revision notes, formula sheets, custom tests & much more.