Join the Most Relevant JEE Main 2025 Test Series & get 99+ percentile! Join Now
Search any question & find its solution
Question: Answered & Verified by Expert
$\int_{0}^{1}\left(\frac{x^{2}-2}{x^{2}+1}\right) d x=$
MathematicsDefinite IntegrationMHT CETMHT CET 2020 (16 Oct Shift 2)
Options:
  • A $1+\frac{3 \pi}{4}$
  • B $1-\frac{3 \pi}{4}$
  • C $1-\frac{\pi}{4}$
  • D $1+\frac{\pi}{4}$
Solution:
2070 Upvotes Verified Answer
The correct answer is: $1-\frac{3 \pi}{4}$
(C)
$\begin{aligned} \int_{0}^{1} \frac{x^{2}+1-3}{x^{2}+1} d x &=\int_{0}^{1} \frac{x^{2}+1}{x^{2}+1}-\frac{3}{x^{2}+1} d x \\ &=\int_{0}^{1} 1-\frac{3}{x^{2}+1} d x=\left[x-3 \tan ^{-1} x\right]_{0}^{1} \\ &=\left(1-3 \tan ^{-1} 1\right)-\left(0-3 \tan ^{-1} 0\right)=1-3 \frac{\pi}{4} \end{aligned}$

Looking for more such questions to practice?

Download the MARKS App - The ultimate prep app for IIT JEE & NEET with chapter-wise PYQs, revision notes, formula sheets, custom tests & much more.