Join the Most Relevant JEE Main 2025 Test Series & get 99+ percentile! Join Now
Search any question & find its solution
Question: Answered & Verified by Expert
$\int_0^{1 / 2}|\sin 4 \pi x| d x=$
MathematicsDefinite IntegrationTS EAMCETTS EAMCET 2018 (07 May Shift 1)
Options:
  • A $\pi-1$
  • B $\frac{2}{\pi}$
  • C $\frac{1}{\pi}$
  • D 0
Solution:
1759 Upvotes Verified Answer
The correct answer is: $\frac{1}{\pi}$
$$
\begin{aligned}
& \text { Let } I=\int_0^{1 / 2}|\sin 4 \pi x| d x \\
& =2 \int_0^{1 / 4}|\sin 4 \pi x| d x=2 \int_0^{1 / 4} \sin 4 \pi x d x \\
& =2\left[\frac{-\cos 4 \pi x}{4 \pi}\right]_0^{1 / 4}=\frac{1}{2 \pi}[-\cos \pi+\cos 0] \\
& =\frac{1}{2 \pi}[1+1]=\frac{1}{\pi}
\end{aligned}
$$

Looking for more such questions to practice?

Download the MARKS App - The ultimate prep app for IIT JEE & NEET with chapter-wise PYQs, revision notes, formula sheets, custom tests & much more.