Join the Most Relevant JEE Main 2025 Test Series & get 99+ percentile! Join Now
Search any question & find its solution
Question: Answered & Verified by Expert
$\int_0^{2 \pi} \frac{x \cos (x)}{1+\cos (x)} d x=$
MathematicsDefinite IntegrationAP EAMCETAP EAMCET 2020 (22 Sep Shift 1)
Options:
  • A $\frac{\pi}{6}$
  • B $\pi^2$
  • C $\frac{\pi}{4}$
  • D None of the above.
Solution:
1030 Upvotes Verified Answer
The correct answer is: None of the above.
$I=\int_0^{2 \pi} \frac{x \cos x}{1+\cos x} d x$
On applying property $\int_0^a f(x) d x=\int_0^a f(a-x) d x$,
we get
$$
I=\int_0^{2 \pi} \frac{(2 \pi-x) \cos x}{1+\cos x} d x \ldots \text { (ii) }\{\because \cos (2 \pi-x)=\cos x\}
$$

On adding Eqs. (i) and (ii), we get
$$
\begin{aligned}
2 I & =2 \pi \int_0^{2 \pi} \frac{\cos x}{1+\cos x} d x \\
\Rightarrow I & =2 \pi \int_0^\pi \frac{\cos x}{1+\cos x} d x=2 \pi \int_0^\pi\left(1-\frac{1}{1+\cos x}\right) d x \\
& =2 \pi \int_0^\pi\left(1-\frac{\sec ^2 \frac{x}{2}}{2}\right) d x=2 \pi\left[x-\tan \frac{x}{2}\right]_0^\pi
\end{aligned}
$$

Looking for more such questions to practice?

Download the MARKS App - The ultimate prep app for IIT JEE & NEET with chapter-wise PYQs, revision notes, formula sheets, custom tests & much more.