Join the Most Relevant JEE Main 2025 Test Series & get 99+ percentile! Join Now
Search any question & find its solution
Question: Answered & Verified by Expert
$\int_0^{\pi / 2} \frac{\cos x \sin x}{1+\sin x} d x$ is equal to
MathematicsDefinite IntegrationKCETKCET 2022
Options:
  • A $\log 2-1$
  • B $\log 2$
  • C $-\log 2$
  • D $1-\log 2$
Solution:
1663 Upvotes Verified Answer
The correct answer is: $1-\log 2$
$$
\text { } \begin{aligned}
\text { Let } I & =\int_0^{\pi / 2} \frac{\cos x \sin x}{1+\sin x} d x \\
& =\int_0^{\pi / 2} \frac{\cos x(1+\sin x-1)}{1+\sin x} d x \\
I & =\int_0^{\pi / 2}\left(\frac{\cos x(1+\sin x)}{1+\sin x}-\frac{\cos x}{1+\sin x}\right) d x
\end{aligned}
$$

$$
\begin{aligned}
& =\int_0^{\pi / 2} \cos x d x-\int_0^{\pi / 2} \frac{\cos x}{1+\sin x} d x=[\sin x]_0^{\pi / 2}-I_1 \\
I_1 & =\int_0^{\pi / 2} \frac{\cos x}{1+\sin x} d x
\end{aligned}
$$
Let $1+\sin x=t$
$$
\begin{aligned}
\Rightarrow \cos x d x & =d t \\
I_1 & =\int_0^{\pi / 2} \frac{d t}{t}=[\log t]_0^{\pi / 2}=[\log (1+\sin x)]_0^{\pi / 2} \\
& =\log (1+1)-\log (1+0)=\log 2
\end{aligned}
$$
Now, from Eq. (i), we have
$$
I=[1-0]-\log 2=1-\log 2
$$

Looking for more such questions to practice?

Download the MARKS App - The ultimate prep app for IIT JEE & NEET with chapter-wise PYQs, revision notes, formula sheets, custom tests & much more.