Search any question & find its solution
Question:
Answered & Verified by Expert
$\int_{0}^{\pi / 2} \frac{2^{\sin x}}{2^{\sin x}+2^{\cos x}} d x$ equals
Options:
Solution:
1239 Upvotes
Verified Answer
The correct answer is:
$\pi / 4$
$\mathrm{I}=\int_{0}^{\pi / 2} \frac{2^{\sin \mathrm{x}}}{2^{\sin x}+2^{\cos \mathrm{x}} \mathrm{dx}}$
$\mathrm{I}=\int_{0}^{\pi / 2} \frac{2^{\sin (\pi / 2-\mathrm{x})}}{2^{\sin (\pi / 2-\mathrm{x})}+2^{\cos (\pi / 2-\mathrm{x})} \mathrm{dx}}$
$=\int \frac{2^{\cos \mathrm{x}}}{2^{\cos \mathrm{x}}+2^{\sin \mathrm{x}}} \mathrm{dx} \Rightarrow 21=\int_{0}^{\pi / 2} \mathrm{~d} \mathrm{x}=\frac{\pi}{2} \Rightarrow 1=\frac{\pi}{4}$
$\mathrm{I}=\int_{0}^{\pi / 2} \frac{2^{\sin (\pi / 2-\mathrm{x})}}{2^{\sin (\pi / 2-\mathrm{x})}+2^{\cos (\pi / 2-\mathrm{x})} \mathrm{dx}}$
$=\int \frac{2^{\cos \mathrm{x}}}{2^{\cos \mathrm{x}}+2^{\sin \mathrm{x}}} \mathrm{dx} \Rightarrow 21=\int_{0}^{\pi / 2} \mathrm{~d} \mathrm{x}=\frac{\pi}{2} \Rightarrow 1=\frac{\pi}{4}$
Looking for more such questions to practice?
Download the MARKS App - The ultimate prep app for IIT JEE & NEET with chapter-wise PYQs, revision notes, formula sheets, custom tests & much more.