Join the Most Relevant JEE Main 2025 Test Series & get 99+ percentile! Join Now
Search any question & find its solution
Question: Answered & Verified by Expert
$\int_{0}^{\frac{\pi}{2}} \frac{1-\cot x}{\operatorname{cosec} x+\cos x} d x=$
MathematicsDefinite IntegrationMHT CETMHT CET 2020 (13 Oct Shift 2)
Options:
  • A 0
  • B $\frac{\pi}{2}$
  • C 1
  • D $\frac{\pi}{4}$
Solution:
1479 Upvotes Verified Answer
The correct answer is: 0
$\text { Let } \begin{aligned}
I &=\int_{0}^{\frac{\pi}{2}} \frac{1-\cot x}{\operatorname{cosec} x+\cos x} d x \\
I &=\int_{0}^{\frac{\pi}{2}} \frac{1-\frac{\cos x}{\sin x}}{\frac{1}{\sin x}+\cos x} d x=\int_{0}^{\frac{\pi}{2}} \frac{\sin x-\cos x}{1+\sin x \cos x} d x ...(1)\\
I &=\int_{0}^{\frac{\pi}{2}} \frac{\sin \left(\frac{\pi}{2}-x\right)-\cos \left(\frac{\pi}{2}-x\right)}{1+\sin \left(\frac{\pi}{x}-x\right) \cos \left(\frac{\pi}{2}-x\right)} d x \\
I &=\int_{0}^{\frac{\pi}{2}} \frac{\cos x-\sin x}{1+\cos x \sin x} d x ...(2)
\end{aligned}$
Adding equations (1) \& (2), we get
$\begin{array}{l}
2 I=\int_{0}^{\frac{\pi}{2}} \frac{\sin x-\cos x+\cos x-\sin x}{1+\sin x \cos x} d x \\
2 I=0 \Rightarrow I=0
\end{array}$

Looking for more such questions to practice?

Download the MARKS App - The ultimate prep app for IIT JEE & NEET with chapter-wise PYQs, revision notes, formula sheets, custom tests & much more.