Join the Most Relevant JEE Main 2025 Test Series & get 99+ percentile! Join Now
Search any question & find its solution
Question: Answered & Verified by Expert
$\int_{0}^{\frac{\pi}{2}} \frac{\sin ^{\frac{2}{3}} x}{\sin ^{\frac{2}{3}} x+\cos ^{\frac{2}{3}} x} d x=$
MathematicsDefinite IntegrationMHT CETMHT CET 2020 (13 Oct Shift 1)
Options:
  • A $\frac{\pi}{4}$
  • B $\frac{\pi}{8}$
  • C $\frac{\pi}{2}$
  • D $\pi$
Solution:
2958 Upvotes Verified Answer
The correct answer is: $\frac{\pi}{4}$
$\begin{aligned} I &=\int_{0}^{\frac{\pi}{2}} \frac{\sin ^{\frac{2}{3}} x}{\sin ^{\frac{2}{3}} x+\cos ^{\frac{2}{3}} x} d x ...(1)\\ &=\int_{0}^{\frac{\pi}{2}} \frac{\sin ^{\frac{2}{3}}\left(\frac{\pi}{2}-x\right)}{\sin ^{\frac{2}{3}}\left(\frac{\pi}{2}-x\right)+\cos ^{\frac{2}{3}}\left(\frac{\pi}{2}-x\right)} d x \\ \therefore I &=\int_{0}^{2} \frac{\cos ^{\frac{2}{3}} x}{\sin ^{\frac{2}{3}} x+\cos ^{\frac{2}{3}} x} d x ...(2) \end{aligned}$
Adding equation (1) \& (2) we get
$\begin{aligned}
2 I &=\int_{0}^{2} 1 d x \Rightarrow 2 I=[x]_{0}^{\frac{\pi}{2}} \\
I &=\frac{1}{2}\left(\frac{\pi}{2}-0\right)=\frac{\pi}{4}
\end{aligned}$

Looking for more such questions to practice?

Download the MARKS App - The ultimate prep app for IIT JEE & NEET with chapter-wise PYQs, revision notes, formula sheets, custom tests & much more.