Search any question & find its solution
Question:
Answered & Verified by Expert
$\int_0^{\pi / 2} \frac{200 \sin x+100 \cos x}{\sin x+\cos x} d x$ is equal to
Options:
Solution:
2225 Upvotes
Verified Answer
The correct answer is:
$75 \pi$
Let $\begin{aligned} I & =\int_0^{\pi / 2} \frac{200 \sin x+100 \cos x}{\sin x+\cos x} d x \\ & =100 \int_0^{\pi / 2} \frac{(\sin x+\cos x)+\sin x}{\sin x+\cos x} d x \\ & =100\left[\int_0^{\pi / 2} 1 d x+\int_0^{\pi / 2} \frac{\sin x}{\sin x+\cos x} d x\right]\end{aligned}$
$=\int_0^{\pi / 2} \frac{\sin \left(\frac{\pi}{2}-x\right)}{\sin \left(\frac{\pi}{2}-x\right)+\cos \left(\frac{\pi}{2}-x\right)} d x$
On adding Eqs. (i) and (ii), we get
$\begin{aligned}
& 2 I_1=\int_0^{\pi / 2} 1 d x=\frac{\pi}{2} \\
& \Rightarrow \quad I_1=\frac{\pi}{4} \\
& \therefore \quad I=100\left[\frac{\pi}{2}+\frac{\pi}{4}\right]=100 \times \frac{3 \pi}{4}=75 \pi \\
&
\end{aligned}$
$=\int_0^{\pi / 2} \frac{\sin \left(\frac{\pi}{2}-x\right)}{\sin \left(\frac{\pi}{2}-x\right)+\cos \left(\frac{\pi}{2}-x\right)} d x$
On adding Eqs. (i) and (ii), we get
$\begin{aligned}
& 2 I_1=\int_0^{\pi / 2} 1 d x=\frac{\pi}{2} \\
& \Rightarrow \quad I_1=\frac{\pi}{4} \\
& \therefore \quad I=100\left[\frac{\pi}{2}+\frac{\pi}{4}\right]=100 \times \frac{3 \pi}{4}=75 \pi \\
&
\end{aligned}$
Looking for more such questions to practice?
Download the MARKS App - The ultimate prep app for IIT JEE & NEET with chapter-wise PYQs, revision notes, formula sheets, custom tests & much more.