Join the Most Relevant JEE Main 2025 Test Series & get 99+ percentile! Join Now
Search any question & find its solution
Question: Answered & Verified by Expert
$\int_0^{\pi / 2} \sin ^{2 m} x d x=$
MathematicsDefinite IntegrationJEE Main
Options:
  • A $\frac{2 m!}{\left(2^m \cdot m!\right)^3} \cdot \frac{\pi}{2}$
  • B $\frac{(2 m)!}{\left(2^m \cdot m!\right)^2} \cdot \frac{\pi}{2}$
  • C $\frac{2 m!}{2^m \cdot(m!)^4} \cdot \frac{\pi}{2}$
  • D None of these
Solution:
1429 Upvotes Verified Answer
The correct answer is: $\frac{(2 m)!}{\left(2^m \cdot m!\right)^2} \cdot \frac{\pi}{2}$
Here the power is even, so from formula
$\begin{aligned} & \int_0^{\pi / 2} \sin ^{2 m} x d x=\frac{(2 m-1)}{2 m} \cdot \frac{(2 m-3)}{(2 m-2)} \cdots \cdots \cdot \frac{3}{4} \cdot \frac{1}{2} \cdot \frac{\pi}{2} \\ & =\frac{2 m \cdot(2 m-1)(2 m-2) \ldots \cdot 3 \cdot 2 \cdot 1 \cdot \frac{\pi}{2}}{[2 m \cdot(2 m-2)(2 m-4) \ldots . .4 \cdot 2]^2}\end{aligned}$
Multiplying the numerator and the denominator by $2 m(2 m-2) \ldots . .4 .2$ $=\frac{(2 m)!}{\left[2^m \cdot m(m-1)(m-2) \ldots . .2 .1\right]^2} \frac{\pi}{2}$
$=\frac{(2 m)!}{\left(2^m \cdot m!\right)^2} \frac{\pi}{2}$

Looking for more such questions to practice?

Download the MARKS App - The ultimate prep app for IIT JEE & NEET with chapter-wise PYQs, revision notes, formula sheets, custom tests & much more.