Search any question & find its solution
Question:
Answered & Verified by Expert
$\int_0^{\pi / 2} \sin ^5\left(\frac{x}{2}\right) \cdot \sin x d x=$
Options:
Solution:
1085 Upvotes
Verified Answer
The correct answer is:
$\frac{1}{14 \sqrt{2}}$
$\begin{aligned} & \int_0^{\pi / 2} \sin ^5 \frac{x}{2} \sin x \mathrm{~d} x \\ & =\int_0^{\pi / 2} \sin ^5 \frac{x}{2} \cdot 2 \sin \frac{x}{2} \cdot \cos \frac{x}{2} \mathrm{~d} x \\ & =2 \int_0^{\pi / 2} \sin ^6 \frac{x}{2} \cdot \cos \frac{x}{2} \cdot \mathrm{d} x \\ & \quad \frac{1}{\sqrt{2}} \\ & =4 \int_0^6 t^6 \mathrm{~d} t=\frac{4}{7}\left[t^7\right]_0^{\frac{1}{\sqrt{2}}}\left[\text { let } \sin \frac{x}{2}=t\right]\end{aligned}$
$=\frac{4}{7} \cdot\left(\frac{1}{\sqrt{2}}\right)^7=\frac{1}{14 \sqrt{2}}$
$=\frac{4}{7} \cdot\left(\frac{1}{\sqrt{2}}\right)^7=\frac{1}{14 \sqrt{2}}$
Looking for more such questions to practice?
Download the MARKS App - The ultimate prep app for IIT JEE & NEET with chapter-wise PYQs, revision notes, formula sheets, custom tests & much more.