Join the Most Relevant JEE Main 2025 Test Series & get 99+ percentile! Join Now
Search any question & find its solution
Question: Answered & Verified by Expert
$\int_0^{\pi / 2} \sin ^5\left(\frac{x}{2}\right) \cdot \sin x d x=$
MathematicsDefinite IntegrationMHT CETMHT CET 2022 (10 Aug Shift 2)
Options:
  • A $\frac{1}{7 \sqrt{2}}$
  • B $\frac{1}{56 \sqrt{2}}$
  • C $\frac{1}{14 \sqrt{2}}$
  • D $\frac{1}{28 \sqrt{2}}$
Solution:
1085 Upvotes Verified Answer
The correct answer is: $\frac{1}{14 \sqrt{2}}$
$\begin{aligned} & \int_0^{\pi / 2} \sin ^5 \frac{x}{2} \sin x \mathrm{~d} x \\ & =\int_0^{\pi / 2} \sin ^5 \frac{x}{2} \cdot 2 \sin \frac{x}{2} \cdot \cos \frac{x}{2} \mathrm{~d} x \\ & =2 \int_0^{\pi / 2} \sin ^6 \frac{x}{2} \cdot \cos \frac{x}{2} \cdot \mathrm{d} x \\ & \quad \frac{1}{\sqrt{2}} \\ & =4 \int_0^6 t^6 \mathrm{~d} t=\frac{4}{7}\left[t^7\right]_0^{\frac{1}{\sqrt{2}}}\left[\text { let } \sin \frac{x}{2}=t\right]\end{aligned}$
$=\frac{4}{7} \cdot\left(\frac{1}{\sqrt{2}}\right)^7=\frac{1}{14 \sqrt{2}}$

Looking for more such questions to practice?

Download the MARKS App - The ultimate prep app for IIT JEE & NEET with chapter-wise PYQs, revision notes, formula sheets, custom tests & much more.