Join the Most Relevant JEE Main 2025 Test Series & get 99+ percentile! Join Now
Search any question & find its solution
Question: Answered & Verified by Expert
$\int_0^{\pi / 2} \sin ^8 x \cos ^2 x d x$ is equal to
MathematicsDefinite IntegrationTS EAMCETTS EAMCET 2001
Options:
  • A $\frac{\pi}{512}$
  • B $\frac{3 \pi}{512}$
  • C $\frac{5 \pi}{512}$
  • D $\frac{7 \pi}{512}$
Solution:
1884 Upvotes Verified Answer
The correct answer is: $\frac{7 \pi}{512}$
$\begin{aligned} & \int_0^{\pi / 2} \sin ^8 x \cdot \cos ^2 x d x=\frac{\frac{8+1}{2} ! \frac{2+1}{2} !}{2 \frac{8+2+2}{2} !} \\ &=\frac{\frac{7}{2} \cdot \frac{5}{2} \cdot \frac{3}{2} \cdot \frac{1}{2} \sqrt{\pi} \cdot \frac{1}{2} \cdot \pi}{2 \cdot 5 \cdot 4 \cdot 3 \cdot 2 \cdot 1}=\frac{7 \pi}{512}\end{aligned}$
[OBJECT END

Looking for more such questions to practice?

Download the MARKS App - The ultimate prep app for IIT JEE & NEET with chapter-wise PYQs, revision notes, formula sheets, custom tests & much more.