Join the Most Relevant JEE Main 2025 Test Series & get 99+ percentile! Join Now
Search any question & find its solution
Question: Answered & Verified by Expert
$\int_0^2 x^{\frac{5}{2}} \sqrt{2-x} d x=$
MathematicsDefinite IntegrationTS EAMCETTS EAMCET 2023 (13 May Shift 1)
Options:
  • A $\frac{5 \pi}{16}$
  • B $\frac{5}{4}$
  • C $\frac{5 \pi}{8}$
  • D $\frac{5}{8}$
Solution:
2527 Upvotes Verified Answer
The correct answer is: $\frac{5 \pi}{8}$
$\int_0^2 x^{5 / 2} \sqrt{2-x} d x$
Put $x=2 \sin ^2 \theta, d x=4 \sin \theta \cos \theta d \theta$
$$
\begin{aligned}
& =\int_0^{\pi / 2} x^{5 / 2} \sqrt{2-x} d x \\
& =\int_0^{\pi / 2}\left(2 \sin ^2 \theta\right)^{5 / 2} \sqrt{2-2 \sin ^2 \theta} \cdot 4 \sin \theta \cos \theta d \theta \\
& =\int_0^{\pi / 2} 2^3 \times 4 \cos ^2 \theta \sin ^6 \theta d \theta=32 \int_0^{\pi / 2} \sin ^6 \theta \cos ^2 \theta d \theta
\end{aligned}
$$
Using Walli's formula
$$
=32\left[\frac{(5 \cdot 3 \ldots 1)(1)}{8 \cdot 6 \cdot 4 \cdot 2}\right] \cdot \frac{\pi}{2}=\frac{5 \pi}{8}
$$

Looking for more such questions to practice?

Download the MARKS App - The ultimate prep app for IIT JEE & NEET with chapter-wise PYQs, revision notes, formula sheets, custom tests & much more.