Join the Most Relevant JEE Main 2025 Test Series & get 99+ percentile! Join Now
Search any question & find its solution
Question: Answered & Verified by Expert
$$
\int_0^2 x^3(2-x)^4 d x=
$$
MathematicsDefinite IntegrationTS EAMCETTS EAMCET 2023 (13 May Shift 2)
Options:
  • A $\frac{128}{105}$
  • B $\frac{16}{35}$
  • C $\frac{256}{105}$
  • D $\frac{32}{35}$
Solution:
1611 Upvotes Verified Answer
The correct answer is: $\frac{32}{35}$
$\begin{aligned} & \text {} I=\int_0^2 x^3(2-x)^4 d x \Rightarrow I=\int_0^2(2-x)^3 \cdot x^4 d x \\ & \Rightarrow \quad 2 I=\int_0^2\left(x^3(2-x)^4+(2-x)^3 x^4\right) d x \\ & \Rightarrow \quad I I=\int_0^2 x^3(2-x)^3(2-x+x) d x \\ & \Rightarrow \quad I=\int_0^2 x^3(2-x)^3 d x \\ & \Rightarrow I=\int_0^2 x^3\left(8-12 x+6 x^2-x^3\right) d x \\ & \Rightarrow I=\int_0^2\left(8 x^3-12 x^4+6 x^5-x^6\right) d x \\ & \Rightarrow I=\left[2 x^4-\frac{12 x^5}{5}+x^6-\frac{x^7}{7}\right]_0^2 \\ & \Rightarrow I=32-\frac{384}{5}+64-\frac{128}{7}=\frac{32}{35} .\end{aligned}$

Looking for more such questions to practice?

Download the MARKS App - The ultimate prep app for IIT JEE & NEET with chapter-wise PYQs, revision notes, formula sheets, custom tests & much more.