Search any question & find its solution
Question:
Answered & Verified by Expert
$\int_0^{\frac{\pi}{4}} \frac{\cos ^2 x}{\cos ^2 x+4 \sin ^2 x} d x=$
Options:
Solution:
2696 Upvotes
Verified Answer
The correct answer is:
$-\frac{\pi}{12}+\frac{2}{3} \tan ^{-1} 2$
$\begin{aligned}
& \text {Let } I=\int \frac{\cos ^2 x}{\cos ^2 x+4 \sin ^2 x} d x \\
& =\int \frac{\cos ^2 x}{3 \sin ^2 x+1} d x=\int \frac{\sec ^2 x}{\left(\tan ^2 x+1\right)\left(4 \tan ^2 x+1\right)} d x
\end{aligned}$
Let $u=\tan x \Rightarrow d u=\sec ^2 x d x$
$\begin{aligned}
& I=\int \frac{d u}{\left(u^2+1\right)\left(4 u^2+1\right)}=\int\left(\frac{4 / 3}{4 u^2+1}-\frac{1 / 3}{u^2+1}\right) d u \\
& \frac{2}{3} \tan ^{-1}(2 u)-\frac{1}{3} \tan ^{-1}(u)+c
\end{aligned}$
Now $\int_0^{\pi / 4} \frac{\cos ^2 x}{\cos ^2 x+4 \sin ^2 x} d x=\frac{2}{3} \tan ^{-1}(2)-\frac{\pi}{12}$
& \text {Let } I=\int \frac{\cos ^2 x}{\cos ^2 x+4 \sin ^2 x} d x \\
& =\int \frac{\cos ^2 x}{3 \sin ^2 x+1} d x=\int \frac{\sec ^2 x}{\left(\tan ^2 x+1\right)\left(4 \tan ^2 x+1\right)} d x
\end{aligned}$
Let $u=\tan x \Rightarrow d u=\sec ^2 x d x$
$\begin{aligned}
& I=\int \frac{d u}{\left(u^2+1\right)\left(4 u^2+1\right)}=\int\left(\frac{4 / 3}{4 u^2+1}-\frac{1 / 3}{u^2+1}\right) d u \\
& \frac{2}{3} \tan ^{-1}(2 u)-\frac{1}{3} \tan ^{-1}(u)+c
\end{aligned}$
Now $\int_0^{\pi / 4} \frac{\cos ^2 x}{\cos ^2 x+4 \sin ^2 x} d x=\frac{2}{3} \tan ^{-1}(2)-\frac{\pi}{12}$
Looking for more such questions to practice?
Download the MARKS App - The ultimate prep app for IIT JEE & NEET with chapter-wise PYQs, revision notes, formula sheets, custom tests & much more.