Join the Most Relevant JEE Main 2025 Test Series & get 99+ percentile! Join Now
Search any question & find its solution
Question: Answered & Verified by Expert
$\int_0^{\pi / 4} \log (1+\tan x) d x=$
MathematicsDefinite IntegrationMHT CETMHT CET 2021 (20 Sep Shift 1)
Options:
  • A $\frac{\pi}{16} \log 2$
  • B $\frac{\pi}{4} \log 2$
  • C $\frac{\pi}{8} \log 2$
  • D $\pi \log 2$
Solution:
1933 Upvotes Verified Answer
The correct answer is: $\frac{\pi}{8} \log 2$
$\begin{aligned} & \text { Let } I=\int_0^{\pi / 4} \log (1+\tan x) d x \\ & =\int_0^{\pi / 4} \log \left[1+\tan \left(\frac{\pi}{4}-x\right)\right] d x \\ & =\int_0^{\pi / 4} \log \left[1+\left(\frac{1-\tan x}{1+\tan x}\right)\right] d x=\int_0^{\pi / 4} \log \left(\frac{2}{1+\tan x}\right) d x \\ & =\int_0^{\pi / 4}(\log 2) d x-\int_0^{\pi / 4} \log (1+\tan x) d x=\int_0^{\pi / 4}(\log 2) d x-I \\ & \therefore 2 I=(\log 2)[x]_0^{\pi / 4}=(\log 2)\left(\frac{\pi}{4}\right) \Rightarrow I=\left(\frac{\pi}{8}\right) \log 2\end{aligned}$

Looking for more such questions to practice?

Download the MARKS App - The ultimate prep app for IIT JEE & NEET with chapter-wise PYQs, revision notes, formula sheets, custom tests & much more.