Search any question & find its solution
Question:
Answered & Verified by Expert
$\int_0^{\pi / 4} \log (1+\tan x) d x=$
Options:
Solution:
1933 Upvotes
Verified Answer
The correct answer is:
$\frac{\pi}{8} \log 2$
$\begin{aligned} & \text { Let } I=\int_0^{\pi / 4} \log (1+\tan x) d x \\ & =\int_0^{\pi / 4} \log \left[1+\tan \left(\frac{\pi}{4}-x\right)\right] d x \\ & =\int_0^{\pi / 4} \log \left[1+\left(\frac{1-\tan x}{1+\tan x}\right)\right] d x=\int_0^{\pi / 4} \log \left(\frac{2}{1+\tan x}\right) d x \\ & =\int_0^{\pi / 4}(\log 2) d x-\int_0^{\pi / 4} \log (1+\tan x) d x=\int_0^{\pi / 4}(\log 2) d x-I \\ & \therefore 2 I=(\log 2)[x]_0^{\pi / 4}=(\log 2)\left(\frac{\pi}{4}\right) \Rightarrow I=\left(\frac{\pi}{8}\right) \log 2\end{aligned}$
Looking for more such questions to practice?
Download the MARKS App - The ultimate prep app for IIT JEE & NEET with chapter-wise PYQs, revision notes, formula sheets, custom tests & much more.