Join the Most Relevant JEE Main 2025 Test Series & get 99+ percentile! Join Now
Search any question & find its solution
Question: Answered & Verified by Expert
$\int_{0}^{4}|x-2| d x=$
MathematicsDefinite IntegrationMHT CETMHT CET 2020 (20 Oct Shift 2)
Options:
  • A 0
  • B 4
  • C 8
  • D 2
Solution:
1139 Upvotes Verified Answer
The correct answer is: 4
$\begin{aligned} \int_{0}^{4}|x-2| d x &=\int_{0}^{2}(2-x) d x+\int_{2}^{4}(x-2) d x \\ &=2[x]_{0}^{2}-\frac{1}{2}\left[x^{2}\right]_{0}^{2}+\frac{1}{2}\left[x^{2}\right]_{2}^{4}-2[x]_{2}^{4} \\ &=2(2)-\frac{1}{2}(4)+\frac{1}{2}(16-4)-2(4-2) \\ &=4-2+6-4=4 \end{aligned}$

Looking for more such questions to practice?

Download the MARKS App - The ultimate prep app for IIT JEE & NEET with chapter-wise PYQs, revision notes, formula sheets, custom tests & much more.