Join the Most Relevant JEE Main 2025 Test Series & get 99+ percentile! Join Now
Search any question & find its solution
Question: Answered & Verified by Expert
$\int_{0}^{5} \frac{\mathrm{d} x}{x^{2}+2 x+10}$ =
MathematicsDefinite IntegrationMHT CETMHT CET 2020 (15 Oct Shift 2)
Options:
  • A $\frac{\pi}{6}$
  • B $\frac{\pi}{12}$
  • C $\frac{\pi}{3}$
  • D $\frac{\pi}{4}$
Solution:
1695 Upvotes Verified Answer
The correct answer is: $\frac{\pi}{12}$
$\begin{aligned} I &=\int_{0}^{5} \frac{d x}{x^{2}+2 x+10}=\int_{0}^{5} \frac{d x}{(x+1)^{2}+(3)^{2}} \\ &=\frac{1}{3}\left[\tan ^{-1} \frac{x+1}{3}\right]_{0}^{5}=\frac{1}{3}\left[\tan ^{-1} 2-\tan ^{-1} \frac{1}{3}\right] \\ &=\frac{1}{3}\left[\tan ^{-1}\left[\frac{2-\frac{1}{3}}{1+\frac{2}{3}}\right]\right]=\frac{1}{3} \tan ^{-1}(1) \\ &=\frac{1}{3} \times \frac{\pi}{4}=\frac{\pi}{12} \end{aligned}$

Looking for more such questions to practice?

Download the MARKS App - The ultimate prep app for IIT JEE & NEET with chapter-wise PYQs, revision notes, formula sheets, custom tests & much more.