Join the Most Relevant JEE Main 2025 Test Series & get 99+ percentile! Join Now
Search any question & find its solution
Question: Answered & Verified by Expert
$\int_{0}^{\pi} \frac{e^{\cos x}}{\left(e^{\cos x}+e^{-\cos x)}\right.} d x=$
MathematicsDefinite IntegrationMHT CETMHT CET 2020 (20 Oct Shift 1)
Options:
  • A $\frac{-\pi}{2}$
  • B $-\pi$
  • C $\pi$
  • D $\frac{\pi}{2}$
Solution:
2275 Upvotes Verified Answer
The correct answer is: $\frac{\pi}{2}$
$$
\text { Let } \begin{aligned}
I &=\int_{0}^{\pi} \frac{e^{\cos x}}{e^{\cos x}+e^{-\cos x} d x}...(1) \\
&=\int_{0}^{\pi} \frac{e^{\cos (\pi-x)}}{e^{\cos (\pi-x)}+e^{-\cos (\pi-x)}} d x \\
&=\int_{0}^{\pi} \frac{e^{-\cos x}}{e^{-\cos x}+e^{\cos x} d x}...(2)
\end{aligned}
$$
Adding equation (1) \& (2), we get
$$
2 I=\int_{0}^{\pi} 1 d x=[x]_{0}^{\pi} \Rightarrow I=\frac{\pi}{2}
$$

Looking for more such questions to practice?

Download the MARKS App - The ultimate prep app for IIT JEE & NEET with chapter-wise PYQs, revision notes, formula sheets, custom tests & much more.