Search any question & find its solution
Question:
Answered & Verified by Expert
$\int_{0}^{\infty} \frac{\mathrm{dx}}{\left(\mathrm{x}^{2}+\mathrm{a}^{2}\right)\left(\mathrm{x}^{2}+\mathrm{b}^{2}\right)}$ is
Options:
Solution:
2553 Upvotes
Verified Answer
The correct answer is:
$\frac{\pi}{2 a b(a+b)}$
$\int_{0}^{\infty} \frac{d x}{\left(x^{2}+a^{2}\right)\left(x^{2}+b^{2}\right)}=\frac{1}{b^{2}-a^{2}}$
$\int_{0}^{\infty} \frac{\left(x^{2}+b^{2}\right)-\left(x^{2}+a^{2}\right)}{\left(x^{2}+a^{2}\right)\left(x^{2}+b^{2}\right)}$
$=\frac{1}{b^{2}-a^{2}} \int_{0}^{\infty}\left[\frac{1}{x^{2}+a^{2}}-\frac{1}{x^{2}+b^{2}}\right] d x$
$=\frac{1}{b^{2}-a^{2}}\left[\frac{1}{a} \tan ^{-1} \frac{x}{a}-\frac{1}{b} \tan ^{-1} \frac{x}{b}\right]_{0}^{\infty}$
$=\frac{1}{b^{2}-a^{2}}\left[\frac{\pi}{2 a}-\frac{\pi}{2 b}\right]=\frac{\pi}{2 a b(a+b)}$
$\int_{0}^{\infty} \frac{\left(x^{2}+b^{2}\right)-\left(x^{2}+a^{2}\right)}{\left(x^{2}+a^{2}\right)\left(x^{2}+b^{2}\right)}$
$=\frac{1}{b^{2}-a^{2}} \int_{0}^{\infty}\left[\frac{1}{x^{2}+a^{2}}-\frac{1}{x^{2}+b^{2}}\right] d x$
$=\frac{1}{b^{2}-a^{2}}\left[\frac{1}{a} \tan ^{-1} \frac{x}{a}-\frac{1}{b} \tan ^{-1} \frac{x}{b}\right]_{0}^{\infty}$
$=\frac{1}{b^{2}-a^{2}}\left[\frac{\pi}{2 a}-\frac{\pi}{2 b}\right]=\frac{\pi}{2 a b(a+b)}$
Looking for more such questions to practice?
Download the MARKS App - The ultimate prep app for IIT JEE & NEET with chapter-wise PYQs, revision notes, formula sheets, custom tests & much more.