Join the Most Relevant JEE Main 2025 Test Series & get 99+ percentile! Join Now
Search any question & find its solution
Question: Answered & Verified by Expert
$\int_{0}^{\infty} \frac{\mathrm{dx}}{\left(\mathrm{x}^{2}+\mathrm{a}^{2}\right)\left(\mathrm{x}^{2}+\mathrm{b}^{2}\right)}$ is
MathematicsDefinite IntegrationBITSATBITSAT 2020
Options:
  • A $\frac{\pi a b}{a+b}$
  • B $\frac{\pi}{2(a+b)}$
  • C $\frac{\pi}{2 a b(a+b)}$
  • D $\frac{\pi(a+b)}{2 a b}$
Solution:
2553 Upvotes Verified Answer
The correct answer is: $\frac{\pi}{2 a b(a+b)}$
$\int_{0}^{\infty} \frac{d x}{\left(x^{2}+a^{2}\right)\left(x^{2}+b^{2}\right)}=\frac{1}{b^{2}-a^{2}}$

$\int_{0}^{\infty} \frac{\left(x^{2}+b^{2}\right)-\left(x^{2}+a^{2}\right)}{\left(x^{2}+a^{2}\right)\left(x^{2}+b^{2}\right)}$

$=\frac{1}{b^{2}-a^{2}} \int_{0}^{\infty}\left[\frac{1}{x^{2}+a^{2}}-\frac{1}{x^{2}+b^{2}}\right] d x$

$=\frac{1}{b^{2}-a^{2}}\left[\frac{1}{a} \tan ^{-1} \frac{x}{a}-\frac{1}{b} \tan ^{-1} \frac{x}{b}\right]_{0}^{\infty}$

$=\frac{1}{b^{2}-a^{2}}\left[\frac{\pi}{2 a}-\frac{\pi}{2 b}\right]=\frac{\pi}{2 a b(a+b)}$

Looking for more such questions to practice?

Download the MARKS App - The ultimate prep app for IIT JEE & NEET with chapter-wise PYQs, revision notes, formula sheets, custom tests & much more.