Join the Most Relevant JEE Main 2025 Test Series & get 99+ percentile! Join Now
Search any question & find its solution
Question: Answered & Verified by Expert
$0.06$ mole of $\mathrm{KNO}_{3}$ solid is added to $100 \mathrm{~cm}^{3}$ of water at $298 \mathrm{~K}$. The enthalpy of $\mathrm{KNO}_{3}(a q)$ solution is $35.8 \mathrm{~kJ} \mathrm{~mol}^{-1}$. After the solute is dissolved the temperature of the solution will be
ChemistryThermodynamics (C)COMEDKCOMEDK 2018
Options:
  • A $293 \mathrm{~K}$
  • B $298 \mathrm{~K}$
  • C $301 \mathrm{~K}$
  • D $304 \mathrm{~K}$
Solution:
1106 Upvotes Verified Answer
The correct answer is: $293 \mathrm{~K}$
$0.06 \mathrm{~mole} \mathrm{} \mathrm{KNO}_{3}$ added to $100 \mathrm{~cm}^{3}$ of water at $298 \mathrm{~K}$
$\Delta H=35.8 \mathrm{~kJ} / \mathrm{mol}$
$\Delta H=m \times C \times \Delta T$
$\left[\begin{array}{l}\Delta H \text { for } 0.06 \text { mole }=35.8 \times 0.06=2.148 \mathrm{~kJ} \\ \text { Mass }=100 \mathrm{~cm}^{3}=100 \mathrm{~g}\end{array}\right]$
$\therefore 2.148=100 \times 0.004184 \mathrm{~kJ} \times \Delta T$
$\Delta T=5.133 \mathrm{~K}$
It is an endothermic process as heat absorbed.
So, temperature will decrease.
$\therefore$ Final temperature
$$
\begin{aligned}
&T=298-5.133 \\
&T=292867 \mathrm{~K} \simeq 293 \mathrm{~K}
\end{aligned}
$$

Looking for more such questions to practice?

Download the MARKS App - The ultimate prep app for IIT JEE & NEET with chapter-wise PYQs, revision notes, formula sheets, custom tests & much more.