Download MARKS App - Trusted by 15,00,000+ IIT JEE & NEET aspirants! Download Now
Search any question & find its solution
Question: Answered & Verified by Expert
$0.1 \mathrm{M}$ solution is present in a conductivity cell with electrode of $100 \mathrm{~cm}^2$ area placed $1 \mathrm{~cm}$ apart and resistance observed is $5 \times 10^3 \mathrm{ohm}$. What is the molar conductivity of this solution?
ChemistryElectrochemistryAIIMSAIIMS 2018 (27 May)
Options:
  • A $5 \times 10^2 \mathrm{~S} \mathrm{~cm}^2 \mathrm{~mol}^{-1}$
  • B $10^4 \mathrm{~S} \mathrm{~cm} \mathrm{~mol}^{-1}$
  • C $200 \mathrm{~S} \mathrm{~cm}^2 \mathrm{~mol}^{-1}$
  • D $0.02 \mathrm{~S} \mathrm{~cm}^2 \mathrm{~mol}^{-1}$
Solution:
2459 Upvotes Verified Answer
The correct answer is: $0.02 \mathrm{~S} \mathrm{~cm}^2 \mathrm{~mol}^{-1}$
Molar conductivity, $\Lambda_m=\frac{\kappa \times 1000}{M}$
$M=$ molarity and $\kappa=$ specific conductivity
$\begin{aligned} \kappa & =\frac{1}{R} \times \text { cell constant } \\ & =\frac{1}{R} \times \frac{\ell}{A}=\frac{1}{5 \times 10^3 \Omega} \times \frac{1 \mathrm{~cm}}{100 \mathrm{~cm}^2} \\ & =2 \times 10^{-6} \Omega^{-1} \mathrm{~cm}^{-1} \\ \therefore \quad \Lambda_m & =\frac{2 \times 10^{-6} \times 1000}{0.1}=0.02 \mathrm{~S} \mathrm{~cm}^2 \mathrm{~mol}^{-1}\end{aligned}$

Looking for more such questions to practice?

Download the MARKS App - The ultimate prep app for IIT JEE & NEET with chapter-wise PYQs, revision notes, formula sheets, custom tests & much more.