Download MARKS App - Trusted by 15,00,000+ IIT JEE & NEET aspirants! Download Now
Search any question & find its solution
Question: Answered & Verified by Expert
$\int_{-1}^1 \frac{\sqrt{1+x+x^2}-\sqrt{1-x+x^2}}{\sqrt{1+x+x^2}+\sqrt{1-x+x^2}} d x$ is equal to
MathematicsDefinite IntegrationJEE Main
Options:
  • A $\frac{3\pi}{2}$
  • B $\frac{\pi}{2}$
  • C $0$
  • D $-1$
Solution:
1843 Upvotes Verified Answer
The correct answer is: $0$
$I=\int_{-1}^1 \frac{\sqrt{1+x+x^2}-\sqrt{1-x+x^2}}{\sqrt{1+x+x^2}+\sqrt{1-x+x^2}} d x$
Let $f(x)=\frac{\sqrt{1+x+x^2}-\sqrt{1-x+x^2}}{\sqrt{1+x+x^2}+\sqrt{1-x+x^2}}$
Replacing $x$ by $-x$, we get
$\begin{aligned}
& f(-x)=\frac{\sqrt{1-x+x^2}-\sqrt{1+x+x^2}}{\sqrt{1-x+x^2}+\sqrt{1+x+x^2}} \\
& =\frac{\sqrt{1+x+x^2}-\sqrt{1-x+x^2}}{\sqrt{1+x+x^2}+\sqrt{1-x+x^2}}=-f(x)
\end{aligned}$
So, $f(x)$ is an odd function.
$\therefore \quad \int_{-1}^1 f(x) d x=0$

Looking for more such questions to practice?

Download the MARKS App - The ultimate prep app for IIT JEE & NEET with chapter-wise PYQs, revision notes, formula sheets, custom tests & much more.