Join the Most Relevant JEE Main 2025 Test Series & get 99+ percentile! Join Now
Search any question & find its solution
Question: Answered & Verified by Expert
$\int_{-1}^{1}\left(x^{27} \cos x+e^{x}\right) d x=$
MathematicsDefinite IntegrationCOMEDKCOMEDK 2015
Options:
  • A $\frac{2 e-1}{e}$
  • B $\frac{e+1}{e}$
  • C $e-\frac{1}{e}$
  • D $\frac{1}{e}$
Solution:
1470 Upvotes Verified Answer
The correct answer is: $e-\frac{1}{e}$
$\begin{aligned} \text{Let} \quad I &=\int_{-1}^{1}\left(x^{27} \cos x+e^{x}\right) d x \\ & \Rightarrow \quad I=\int_{-1}^{1} x^{27} \cos x d x+\int_{-1}^{1} e^{x} d x \end{aligned}$
Since, $f(x)=x^{27} \cos x$ is an odd function.
$$
\left\{\because \int_{-a}^{a} f(x) d x=0 \text { if } f(x) \text { is odd function }\right\}
$$
So, $\quad I=0+\left[e^{x}\right]_{-1}^{1}=e-\frac{1}{e}$

Looking for more such questions to practice?

Download the MARKS App - The ultimate prep app for IIT JEE & NEET with chapter-wise PYQs, revision notes, formula sheets, custom tests & much more.