Join the Most Relevant JEE Main 2025 Test Series & get 99+ percentile! Join Now
Search any question & find its solution
Question: Answered & Verified by Expert
$\int \frac{1+2 e^{-x}}{1-2 e^{-x}} d x=$
MathematicsIndefinite IntegrationJEE Main
Options:
  • A $x-\log \left(1-2 e^{-x}\right)+\mathrm{c}$
  • B $\log \left(1-2 e^{-x}\right)+\mathrm{c}$
  • C $x+\log \left(1-2 e^{-x}\right)+\mathrm{c}$
  • D $x+2\log \left(1-2 e^{-x}\right)+\mathrm{c}$
Solution:
2642 Upvotes Verified Answer
The correct answer is: $x+2\log \left(1-2 e^{-x}\right)+\mathrm{c}$
(B)
Let $\begin{aligned} 1 &=\int \frac{1-2 e^{-x}}{1-2 e^{-1}} \\=& \int \frac{1-2 e^{-x}+4 e^{-x}}{1-2 e^{-1}} d x=\int \frac{1-2 e^{-x}}{1-2 e^{-1}} d x+4 \int \frac{e^{-x}}{1-2 e^{-x}} d x \\=& \int d x+\frac{4}{2} \int \frac{2 e^{-x}}{1-2 e^{-x}} d x=x-2 \cdot \log 1-2 e^{-1}-c \end{aligned}$

Looking for more such questions to practice?

Download the MARKS App - The ultimate prep app for IIT JEE & NEET with chapter-wise PYQs, revision notes, formula sheets, custom tests & much more.