Join the Most Relevant JEE Main 2025 Test Series & get 99+ percentile! Join Now
Search any question & find its solution
Question: Answered & Verified by Expert
$\int \frac{\sin ^8 x-\cos ^8 x}{1-2 \sin ^2 x \cos ^2 x}$ (where $\mathrm{C}$ is constant of integration.)
MathematicsIndefinite IntegrationMHT CETMHT CET 2022 (07 Aug Shift 2)
Options:
  • A $-2 \sin (2 x)+C$
  • B $\frac{1}{2} \cos (2 x)+C$
  • C $2 \cos (2 x)+C$
  • D $-\frac{1}{2} \sin (2 x)+C$
Solution:
2444 Upvotes Verified Answer
The correct answer is: $-\frac{1}{2} \sin (2 x)+C$
$\begin{aligned} & \int \frac{\sin ^8 x-\cos ^8 x}{1-2 \sin ^2 x \cos ^2 x} d x \\ & =\int \frac{\left(\sin ^2 x+\cos ^2 x\right)\left(\sin ^2 x-\cos ^2 x\right)\left(1-2 \sin ^2 x \cdot \cos ^2 x\right)}{1-2 \sin ^2 x \cdot \cos ^2 x} d x \\ & =\int\left(\sin ^2 x-\cos ^2 x\right) d x \\ & =\int-\cos 2 x d x=-\frac{1}{2} \sin 2 x+c\end{aligned}$

Looking for more such questions to practice?

Download the MARKS App - The ultimate prep app for IIT JEE & NEET with chapter-wise PYQs, revision notes, formula sheets, custom tests & much more.