Join the Most Relevant JEE Main 2025 Test Series & get 99+ percentile! Join Now
Search any question & find its solution
Question: Answered & Verified by Expert
$\int_{-\pi}^\pi \frac{\cos ^{2022} x}{1+(2022)^x} d x=$
MathematicsDefinite IntegrationAP EAMCETAP EAMCET 2022 (07 Jul Shift 1)
Options:
  • A $\frac{(2022) !}{2^{2022}((1011) !)^2} \pi$
  • B $\left({ }^{2022} C_{1011}\right) \pi$
  • C $\left({ }^{2022} C_{1011}\right) \frac{\pi}{2^{1011}}$
  • D $\frac{(2022) !}{(1011) ! 2^{2022}} \pi$
Solution:
1537 Upvotes Verified Answer
The correct answer is: $\frac{(2022) !}{2^{2022}((1011) !)^2} \pi$
$I=\int_{-\pi}^\pi \frac{\cos ^{2022}}{1+(2022)^x} d x$ ...(i)


$\Rightarrow I=\int_{-\pi}^\pi \frac{\cos ^{2022} x \cdot\left(2022^x\right.}{\left(202 Z^x+1\right.} d x$ ...(ii)
On adding Eqs. (i) and (ii),
$2 I=\int_{-\pi}^\pi \cos ^{2022} x d x$

$\therefore \quad I=\int_0^\pi \cos ^{2022} x d x=2 \int_0^{\pi / 2} \cos ^{2022} x d x$

$=\frac{\pi}{2^{2022}} \cdot \frac{2022 !}{1011 !(2022-1011) !}=\frac{\pi \cdot 2022 !}{2^{2022}((1011) !)^2}$

Looking for more such questions to practice?

Download the MARKS App - The ultimate prep app for IIT JEE & NEET with chapter-wise PYQs, revision notes, formula sheets, custom tests & much more.