Search any question & find its solution
Question:
Answered & Verified by Expert
$\int \frac{1}{1+3 \sin ^2 x+8 \cos ^2 x} d x$ is equals to
Options:
Solution:
2602 Upvotes
Verified Answer
The correct answer is:
$\frac{1}{6} \tan ^{-1}\left(\frac{2 \tan x}{3}\right)+C$
Let $I=\int \frac{1}{1+3 \sin ^2 x+8 \cos ^2 x} d x$
Dividing the numerator and denominator by
$\cos ^2 x$, we get
$\begin{aligned} & \Rightarrow I=\int \frac{\sec ^2 x}{\sec ^2 x+3 \tan ^2 x+8} d x \\ & \Rightarrow I=\int \frac{\sec ^2 x}{1+\tan ^2 x+3 \tan ^2 x+8} d x \\ & \Rightarrow I=\int \frac{\sec ^2 x}{4 \tan ^2 x+9} d x\end{aligned}$
Putting, $\tan x=t \Rightarrow \sec ^2 x d x=d t$, we get
$\begin{gathered}I=\int \frac{d t}{4 t^2+9}=\frac{1}{4} \int \frac{d t}{t^2+\left(\frac{3}{2}\right)^2}+C \\ I=\frac{1}{4} \times \frac{1}{3 / 2} \tan ^{-1}\left(\frac{t}{3 / 2}\right)+C \\ \Rightarrow \quad I=\frac{1}{6} \tan ^{-1}\left(\frac{2 t}{3}\right)+C=\frac{1}{6} \tan ^{-1}\left(\frac{2 \tan x}{3}\right)+C\end{gathered}$
Dividing the numerator and denominator by
$\cos ^2 x$, we get
$\begin{aligned} & \Rightarrow I=\int \frac{\sec ^2 x}{\sec ^2 x+3 \tan ^2 x+8} d x \\ & \Rightarrow I=\int \frac{\sec ^2 x}{1+\tan ^2 x+3 \tan ^2 x+8} d x \\ & \Rightarrow I=\int \frac{\sec ^2 x}{4 \tan ^2 x+9} d x\end{aligned}$
Putting, $\tan x=t \Rightarrow \sec ^2 x d x=d t$, we get
$\begin{gathered}I=\int \frac{d t}{4 t^2+9}=\frac{1}{4} \int \frac{d t}{t^2+\left(\frac{3}{2}\right)^2}+C \\ I=\frac{1}{4} \times \frac{1}{3 / 2} \tan ^{-1}\left(\frac{t}{3 / 2}\right)+C \\ \Rightarrow \quad I=\frac{1}{6} \tan ^{-1}\left(\frac{2 t}{3}\right)+C=\frac{1}{6} \tan ^{-1}\left(\frac{2 \tan x}{3}\right)+C\end{gathered}$
Looking for more such questions to practice?
Download the MARKS App - The ultimate prep app for IIT JEE & NEET with chapter-wise PYQs, revision notes, formula sheets, custom tests & much more.