Download MARKS App - Trusted by 15,00,000+ IIT JEE & NEET aspirants! Download Now
Search any question & find its solution
Question: Answered & Verified by Expert
$\int_{-1}^{3}\left[\tan ^{-1}\left(\frac{x}{x^{2}+1}\right)+\tan ^{-1}\left(\frac{x^{2}+1}{x}\right)\right] d x=$
MathematicsInverse Trigonometric FunctionsMHT CETMHT CET 2020 (20 Oct Shift 1)
Options:
  • A $\pi$
  • B $2 \pi$
  • C $\frac{\pi}{2}$
  • D $\frac{\pi}{4}$
Solution:
2380 Upvotes Verified Answer
The correct answer is: $2 \pi$
$\begin{aligned} I &=\int_{-1}^{3}\left[\tan ^{-1}\left(\frac{x}{x^{2}+1}\right)+\tan ^{-1}\left(\frac{x^{2}+1}{x}\right)\right] d x \\ &=\int_{-1}^{3}\left[\tan ^{-1}\left(\frac{x}{x^{2}+1}\right)+\cot ^{-1}\left(\frac{x}{x^{2}+1}\right)\right] d x \\ &=\int_{-1}^{3} \frac{\pi}{2} d x=\frac{\pi}{2}[x]_{-1}^{3}=\frac{4 \pi}{2} \\ &=2 \pi \end{aligned}$

Looking for more such questions to practice?

Download the MARKS App - The ultimate prep app for IIT JEE & NEET with chapter-wise PYQs, revision notes, formula sheets, custom tests & much more.