Download MARKS App - Trusted by 15,00,000+ IIT JEE & NEET aspirants! Download Now
Search any question & find its solution
Question: Answered & Verified by Expert
$\left(\frac{1+\cos \phi+i \sin \phi}{1+\cos \phi-i \sin \phi}\right)^n=$
MathematicsComplex NumberJEE Main
Options:
  • A $\cos n \phi-i \sin n \phi$
  • B $\cos n \phi+i \sin n \phi$
  • C $\sin n \phi+i \cos n \phi$
  • D $\sin n \phi-i \cos n \phi$
Solution:
2940 Upvotes Verified Answer
The correct answer is: $\cos n \phi+i \sin n \phi$
L.H.S. $=\left[\frac{2 \cos ^2(\phi / 2)+2 i \sin (\phi / 2) \cos (\phi / 2)}{2 \cos ^2(\phi / 2)-2 i \sin (\phi / 2) \cos (\phi / 2)}\right]^n$
$\begin{aligned}=\left[\frac{\cos (\phi / 2)+i \sin (\phi / 2)}{\cos (\phi / 2)-i \sin (\phi / 2)}\right]^n= & {\left[\frac{e^{i(\phi / 2)}}{e^{-i(\phi / 2)}}\right]^n=\left(e^{i \phi}\right)^n } \\ & =\cos n \phi+i \sin n \phi .\end{aligned}$

Looking for more such questions to practice?

Download the MARKS App - The ultimate prep app for IIT JEE & NEET with chapter-wise PYQs, revision notes, formula sheets, custom tests & much more.