Search any question & find its solution
Question:
Answered & Verified by Expert
$\int \frac{x+\sin x}{1+\cos x} d x=$
Options:
Solution:
1792 Upvotes
Verified Answer
The correct answer is:
$x \tan \left(\frac{x}{2}\right)+c$
$\begin{aligned} & \text { Let } I=\int \frac{x+\sin x}{1+\cos x} d x=\int \frac{x+\sin x}{2 \cos ^2 \frac{x}{2}} \\ & =\int \frac{x}{2 \cos ^2 \frac{x}{2}} d x+\int \frac{2 \sin \frac{x}{2} \cos \frac{x}{2}}{\cos ^2 \frac{x}{2}} d x=\frac{1}{2} \int x \sec ^2 \frac{x}{2} d x+\int \tan \frac{x}{2} d x \\ & =\frac{1}{2}\left[x \tan \frac{x}{2}(2)-\int 2 \tan \frac{x}{2} d x\right]-2 \log \left|\cos \frac{x}{2}\right|+c \\ & =x \tan \frac{x}{2}+2 \log \left|\cos \frac{x}{2}\right|-2 \log \left|\cos \frac{x}{2}\right|+c=\tan \frac{x}{2}+c\end{aligned}$
Looking for more such questions to practice?
Download the MARKS App - The ultimate prep app for IIT JEE & NEET with chapter-wise PYQs, revision notes, formula sheets, custom tests & much more.