Join the Most Relevant JEE Main 2025 Test Series & get 99+ percentile! Join Now
Search any question & find its solution
Question: Answered & Verified by Expert
$1+\cos 10^{\circ}+\cos 20^{\circ}+\cos 30^{\circ}=$
MathematicsTrigonometric Ratios & IdentitiesAP EAMCETAP EAMCET 2017 (26 Apr Shift 1)
Options:
  • A $4 \sin 10^{\circ} \sin 20^{\circ} \sin 30^{\circ}$
  • B $4 \cos 5^{\circ} \cos 10^{\circ} \cos 15^{\circ}$
  • C $4 \cos 10^{\circ} \cos 20^{\circ} \cos 30^{\circ}$
  • D $4 \sin 5^{\circ} \sin 10^{\circ} \sin 15^{\circ}$
Solution:
2431 Upvotes Verified Answer
The correct answer is: $4 \cos 5^{\circ} \cos 10^{\circ} \cos 15^{\circ}$
We have,
$$
\begin{aligned}
& 1+\cos 10^{\circ}+\cos 20^{\circ}+\cos 30^{\circ} \\
& \quad=\left(1+\cos 10^{\circ}\right)+\left(\cos 20^{\circ}+\cos 30^{\circ}\right) \\
& =2 \cos 5^{\circ}+2 \cos 25^{\circ} \cos 5^{\circ} \\
& =2 \cos 5^{\circ}\left(\cos 5^{\circ}+\cos 25^{\circ}\right) \\
& =2 \cos 25^{\circ}\left(2 \cos 15^{\circ} \cos 10^{\circ}\right) \\
& =4 \cos 5^{\circ} \cos 10^{\circ} \cos 15^{\circ}
\end{aligned}
$$

Looking for more such questions to practice?

Download the MARKS App - The ultimate prep app for IIT JEE & NEET with chapter-wise PYQs, revision notes, formula sheets, custom tests & much more.