Search any question & find its solution
 Question:  
Answered & Verified by Expert
 
 $\int \frac{e^x}{\left(1+e^x\right)\left(2+e^x\right)} d x=$
  Options:
            Solution: 
    2986 Upvotes
  
Verified Answer
 
 
The correct answer is:
$\log \left[\frac{1+e^x}{2+e^x}\right]+c$ 
 $\int \frac{e^x}{\left(1+e^x\right)\left(2+e^x\right)} d x=\int\left\{\frac{e^x}{1+e^x}-\frac{e^x}{2+e^x}\right\} d x$
Now put $1+e^x=t$ and $2+e^x=t$, then the required integral
$=\log \left(1+e^x\right)-\log \left(2+e^x\right)=\log \left(\frac{1+e^x}{2+e^x}\right)+c .$
 Now put $1+e^x=t$ and $2+e^x=t$, then the required integral
$=\log \left(1+e^x\right)-\log \left(2+e^x\right)=\log \left(\frac{1+e^x}{2+e^x}\right)+c .$
Looking for more such questions to practice?
Download the MARKS App - The ultimate prep app for IIT JEE & NEET with chapter-wise PYQs, revision notes, formula sheets, custom tests & much more.