Join the Most Relevant JEE Main 2025 Test Series & get 99+ percentile! Join Now
Search any question & find its solution
Question: Answered & Verified by Expert
$\int \frac{\mathrm{dx}}{1+\mathrm{e}^{-\mathrm{x}}}$ is equal to
MathematicsApplication of DerivativesNDANDA 2015 (Phase 2)
Options:
  • A $1+\mathrm{e}^{\mathrm{x}}+\mathrm{c}$
  • B $\ln \left(1+\mathrm{e}^{-x}\right)+\mathrm{c}$
  • C $\ln \left(1+\mathrm{e}^{x}\right)+\mathrm{c}$
  • D $2 \ln \left(1+\mathrm{e}^{-x}\right)+\mathrm{c}$
    where $c$ is the constant of integration
Solution:
1240 Upvotes Verified Answer
The correct answer is: $\ln \left(1+\mathrm{e}^{x}\right)+\mathrm{c}$
$\int \frac{\mathrm{dx}}{1+\mathrm{e}^{-\mathrm{x}}}$
$\Rightarrow \int \frac{\mathrm{e}^{\mathrm{x}}}{\mathrm{e}^{\mathrm{x}}+1} \mathrm{dx}$
Let $\mathrm{e}^{\mathrm{x}}+1=\mathrm{t}$
$\mathrm{e}^{\mathrm{x}} \mathrm{dx}=\mathrm{dt}$
$=\int \frac{\mathrm{dt}}{\mathrm{t}}$
$\Rightarrow \log \mathrm{t}+\mathrm{c} \Rightarrow \log \left(\mathrm{e}^{\mathrm{x}}+1\right)+\mathrm{c}$

Looking for more such questions to practice?

Download the MARKS App - The ultimate prep app for IIT JEE & NEET with chapter-wise PYQs, revision notes, formula sheets, custom tests & much more.