Join the Most Relevant JEE Main 2025 Test Series & get 99+ percentile! Join Now
Search any question & find its solution
Question: Answered & Verified by Expert
$(-1+i \sqrt{3})^{20}$ is equal to
MathematicsComplex NumberJEE Main
Options:
  • A $2^{20}(-1+i \sqrt{3})^{20}$
  • B $2^{20}(1-i \sqrt{3})^{20}$
  • C $2^{20}(-1-i \sqrt{3})^{20}$
  • D None of these
Solution:
1799 Upvotes Verified Answer
The correct answer is: None of these
$\begin{aligned} & \text { Let } z=-1+i \sqrt{3}, r=\sqrt{1+3}=2 \\ & \theta=\tan ^{-1}\left(\frac{\sqrt{3}}{-1}\right)=\frac{2 \pi}{3} \\ & \therefore z=2\left(\cos \frac{2 \pi}{3}+i \sin \frac{2 \pi}{3}\right) \\ & \therefore(z)^{20}=\left[2\left(\cos \frac{2 \pi}{3}+i \sin \frac{2 \pi}{3}\right)\right]^{20} \\ & =2^{20}\left(\cos \frac{2 \pi}{3}+i \sin \frac{2 \pi}{3}\right)^{20}=2^{20}\left(-\frac{1}{2}+i \frac{\sqrt{3}}{2}\right)^{20}\end{aligned}$

Looking for more such questions to practice?

Download the MARKS App - The ultimate prep app for IIT JEE & NEET with chapter-wise PYQs, revision notes, formula sheets, custom tests & much more.