Join the Most Relevant JEE Main 2025 Test Series & get 99+ percentile! Join Now
Search any question & find its solution
Question: Answered & Verified by Expert
$$
\int\left[\frac{1-\log x}{1+(\log x)^{2}}\right]^{2} d x=
$$
MathematicsIndefinite IntegrationMHT CETMHT CET 2020 (14 Oct Shift 2)
Options:
  • A $\frac{1}{1+(\log x)^{2}}+c$
  • B $\frac{x}{1+(\log x)^{2}}+c$
  • C $\frac{1}{1+\log x}+c$
  • D $\frac{x}{1+\log x}+c$
Solution:
1452 Upvotes Verified Answer
The correct answer is: $\frac{x}{1+(\log x)^{2}}+c$
$\begin{aligned}{\text{Let}} I &=\int\left[\frac{1-\log x}{1+(\log x)^{2}}\right]^{2} d x \\ \text { Put } \log x &=t \Rightarrow \frac{1}{x} d x=d t \Rightarrow d x=x \text { dt i.e. } d x=e^{t} d t \\ \therefore I &=\int e^{t}\left[\frac{1-t}{1+t^{2}}\right]^{2} d t=\int e^{t} \frac{(1-t)^{2}}{\left(1+t^{2}\right)^{2}} d t=\int e^{t}\left[\frac{1+t^{2}-2 t}{\left(1+t^{2}\right)^{2}}\right] d t \\ I &=\int e^{t}\left[\frac{1}{1+t^{2}}-\frac{2 t}{\left(1+t^{2}\right)^{2}}\right] d t=\frac{e^{t}}{1+t^{2}}+c \\ I &=\frac{x}{1+(\log x)^{2}}+c \end{aligned}$

Looking for more such questions to practice?

Download the MARKS App - The ultimate prep app for IIT JEE & NEET with chapter-wise PYQs, revision notes, formula sheets, custom tests & much more.