Join the Most Relevant JEE Main 2025 Test Series & get 99+ percentile! Join Now
Search any question & find its solution
Question: Answered & Verified by Expert
$\int \frac{(\log x-1)^2}{\left[1+(\log x)^2\right]^2} d x=$ (where $C$ is constant of integration.)
MathematicsIndefinite IntegrationMHT CETMHT CET 2022 (11 Aug Shift 1)
Options:
  • A $\frac{\log x}{(1+\log x)^2}+C$
  • B $\frac{e^{\log x}}{1+\log x}+C$
  • C $\frac{x}{1+(\log x)^2}+C$
  • D $\frac{\log x}{1+(\log x)^2}+C$
Solution:
2582 Upvotes Verified Answer
The correct answer is: $\frac{x}{1+(\log x)^2}+C$
$\begin{aligned} & \int \frac{(\log x-1)^2}{\left\{1+(\log x)^2\right\}^2} \mathrm{~d} x=\int \frac{(\log x)^2+1-2 \log x}{\left\{1+(\log x)^2\right\}^2} \mathrm{~d} x \\ & =\int\left\{\frac{1}{1+(\log x)^2}-\frac{2 \log x}{\left\{1+(\log x)^2\right\}^2}\right\} \mathrm{d} x \\ & \int\left\{x\left\{\frac{-2 \log x}{x \cdot\left(1+(\log x)^2\right)^2}\right\}+\frac{1}{1+(\log x)^2}\right\} \mathrm{d} x \\ & =\frac{x}{1+(\log x)^2}+C\end{aligned}$

Looking for more such questions to practice?

Download the MARKS App - The ultimate prep app for IIT JEE & NEET with chapter-wise PYQs, revision notes, formula sheets, custom tests & much more.