Join the Most Relevant JEE Main 2025 Test Series & get 99+ percentile! Join Now
Search any question & find its solution
Question: Answered & Verified by Expert
$\int\left\{\frac{(\log x-1)}{\left(1+(\log x)^2\right.}\right\}^2 d x$ is equal to
MathematicsIndefinite IntegrationJEE MainJEE Main 2005
Options:
  • A
    $\frac{\log x}{(\log x)^2+1}+C$
  • B
    $\frac{x}{x^2+1}+C$
  • C
    $\frac{x e^x}{1+x^2}+C$
  • D
    $\frac{x}{(\log x)^2+1}+C$
Solution:
1503 Upvotes Verified Answer
The correct answer is:
$\frac{x}{(\log x)^2+1}+C$
$$
\begin{aligned}
& \int \frac{(\log x-1)^2}{\left(1+(\log x)^2\right)^2} d x \\
& =\int\left[\frac{1}{\left(1+(\log x)^2\right)}-\frac{2 \log x}{\left(1+(\log x)^2\right)^2}\right] d x \\
& =\int\left[\frac{e^t}{1+t^2}-\frac{2 t e^t}{\left(1+t^2\right)^2}\right] d t \text { put } \log x=t \Rightarrow d x=e^t d t \\
& \int e^t\left[\frac{1}{1+t^2}-\frac{2 t}{\left(1+t^2\right)^2}\right] d t \\
& =\frac{e^t}{1+t^2}+c=\frac{x}{1+(\log x)^2}+c
\end{aligned}
$$

Looking for more such questions to practice?

Download the MARKS App - The ultimate prep app for IIT JEE & NEET with chapter-wise PYQs, revision notes, formula sheets, custom tests & much more.