Join the Most Relevant JEE Main 2025 Test Series & get 99+ percentile! Join Now
Search any question & find its solution
Question: Answered & Verified by Expert
$\int \frac{\sin x \cos x}{\sqrt{1-\sin ^{4} x}} d x=$
MathematicsIndefinite IntegrationCOMEDKCOMEDK 2019
Options:
  • A $\frac{1}{2} \sin ^{-1}\left(\sin ^{2} x\right)+C$
  • B $\frac{1}{2} \cos ^{-1}\left(\sin ^{2} x\right)+C$
  • C $\tan^{-1}\left(\sin ^{2} x\right)+C$
  • D $\tan ^{-1}(2 \sin x)+C$
Solution:
2801 Upvotes Verified Answer
The correct answer is: $\frac{1}{2} \sin ^{-1}\left(\sin ^{2} x\right)+C$
Let $I=\int \frac{\sin x \cos x}{\sqrt{1-\sin ^{4} x}} d x$
Put $\sin ^{2} x=t \Rightarrow 2 \sin x \cos x d x=d t$
$\begin{aligned} \therefore \quad I &=\frac{1}{2} \int \frac{d t}{\sqrt{1-t^{2}}} \\ &=\frac{1}{2} \sin ^{-1} t+C=\frac{1}{2} \sin ^{-1}\left(\sin ^{2} x\right)+C \end{aligned}$

Looking for more such questions to practice?

Download the MARKS App - The ultimate prep app for IIT JEE & NEET with chapter-wise PYQs, revision notes, formula sheets, custom tests & much more.