Join the Most Relevant JEE Main 2025 Test Series & get 99+ percentile! Join Now
Search any question & find its solution
Question: Answered & Verified by Expert
$\frac{1-\sin \theta+\cos \theta}{1-\sin \theta-\cos \theta}=$
MathematicsTrigonometric Ratios & IdentitiesMHT CETMHT CET 2020 (19 Oct Shift 2)
Options:
  • A $\cot \frac{\theta}{2}$
  • B $-\cot \frac{\theta}{2}$
  • C $\tan \frac{\theta}{2}$
  • D $-\tan \frac{\theta}{2}$
Solution:
2963 Upvotes Verified Answer
The correct answer is: $-\cot \frac{\theta}{2}$
(D)
$\begin{array}{l}
\text { We know } \sin \theta=2 \sin \frac{\theta}{2} \cdot \cos \frac{\theta}{2} \text { and } \cos \theta=2 \cos ^{2} \frac{\theta}{2}-1=1-2 \sin ^{2} \frac{\theta}{2} \\
\frac{1-\sin \theta+\cos \theta}{1-\sin \theta-\cos \theta}=\frac{1-2 \sin \frac{\theta}{2} \cdot \cos \frac{\theta}{2}+\left(2 \cos ^{2} \frac{\theta}{2}-1\right)}{1-2 \sin \frac{\theta}{2} \cdot \cos \frac{\theta}{2}-\left(1-2 \sin ^{2} \frac{\theta}{2}\right)}
\end{array}$
$=\frac{-2 \sin \frac{\theta}{2} \cdot \cos \frac{\theta}{2}+2 \cos ^{2} \frac{\theta}{2}}{-2 \sin \frac{\theta}{2} \cdot \cos \frac{\theta}{2}+2 \sin ^{2} \frac{\theta}{2}}$
$=\frac{-2 \cos \frac{\theta}{2}\left(\sin \frac{\theta}{2}-\cos \frac{\theta}{2}\right)}{-2 \sin \frac{\theta}{2}\left(\cos \frac{\theta}{2}-\sin \frac{\theta}{2}\right)}=-\cot \frac{\theta}{2}$

Looking for more such questions to practice?

Download the MARKS App - The ultimate prep app for IIT JEE & NEET with chapter-wise PYQs, revision notes, formula sheets, custom tests & much more.