Join the Most Relevant JEE Main 2025 Test Series & get 99+ percentile! Join Now
Search any question & find its solution
Question: Answered & Verified by Expert
$\int \frac{\mathrm{x}^{9 / 2}}{\sqrt{1+\mathrm{x}^{11}}} \mathrm{dx}$ is -
MathematicsIndefinite IntegrationTS EAMCETTS EAMCET 2023 (14 May Shift 2)
Options:
  • A $\frac{2}{11} \log \left(\mathrm{x}^{7 / 2}+\sqrt{\mathrm{x}^7+1}\right)+\mathrm{c}$
  • B $\frac{1}{2} \log \frac{\mathrm{x}^{11}+1}{\mathrm{x}^{11}-1}+\mathrm{c}$
  • C $2 \sqrt{1+\mathrm{X}^{11}}+\mathrm{c}$
  • D None of these
Solution:
2119 Upvotes Verified Answer
The correct answer is: $\frac{2}{11} \log \left(\mathrm{x}^{7 / 2}+\sqrt{\mathrm{x}^7+1}\right)+\mathrm{c}$
$$
\begin{aligned}
& \text { Let } \mathrm{x}^{11 / 2}=\mathrm{t} \Rightarrow \frac{11}{2} \mathrm{x}^{9 / 2} \mathrm{dx}=\mathrm{dt} \\
& \Rightarrow \mathrm{I}=\frac{2}{11} \int \frac{\mathrm{dt}}{\sqrt{1+\mathrm{t}^2}}=\frac{2}{11} \log \left(\mathrm{t}+\sqrt{1+\mathrm{t}^2}\right)+\mathrm{c} \\
& =\frac{2}{11} \log \left(\mathrm{x}^{11 / 2}+\sqrt{1+\mathrm{x}^{11}}\right)+\mathrm{c} .
\end{aligned}
$$

Looking for more such questions to practice?

Download the MARKS App - The ultimate prep app for IIT JEE & NEET with chapter-wise PYQs, revision notes, formula sheets, custom tests & much more.