Join the Most Relevant JEE Main 2025 Test Series & get 99+ percentile! Join Now
Search any question & find its solution
Question: Answered & Verified by Expert
$\int \frac{e^{\tan ^{-1} x}}{1+x^2}\left[\left(\sec ^{-1} \sqrt{1+x^2}\right)^2+\cos ^{-1}\left(\frac{1-x^2}{1+x^2}\right)\right] d x=$
MathematicsIndefinite IntegrationAP EAMCETAP EAMCET 2022 (05 Jul Shift 1)
Options:
  • A $e^{\tan ^{-1} x}\left(\tan ^{-1} x\right)^2+C$
  • B $e^{\tan ^{-1} x}\left(\sec ^{-1} x\right)^2+C$
  • C $e^{\tan ^{-1} x}\left(\sec ^{-1} \cdot\left(\sqrt{1+x^2}\right)\right)+C$
  • D $e^{\tan ^{-1} x}\left(\cos ^{-1}\left(\frac{1-x^2}{1+x^2}\right)\right)+C$
Solution:
2872 Upvotes Verified Answer
The correct answer is: $e^{\tan ^{-1} x}\left(\tan ^{-1} x\right)^2+C$
Let
$I=\int \frac{e^{\tan ^{-1}(x)}}{1+x^2}\left[\left(\sec ^{-1} \sqrt{\left.1+x^2\right)^2}+\cos ^{-1}\left(\frac{1-x^2}{1+x^2}\right)\right] d x\right.$
On putting $\tan ^{-1} x=t$ and $\frac{d x}{1+x^2}=d t$, we get
$I=\int e^t\left[t^2+2 t\right] d t \Rightarrow I=\int\left(t^2 e^t+2 e^t t\right) d t$
By integration by parts, we get
$\begin{aligned} & I=t^2 e^t-\int 2 t e^t d t-\int 2 t e^t d t+C \\ & I=t^2 e^t+C=e^{\tan ^{-1}(x)}\left(\tan ^{-1} x\right)^2+C\end{aligned}$

Looking for more such questions to practice?

Download the MARKS App - The ultimate prep app for IIT JEE & NEET with chapter-wise PYQs, revision notes, formula sheets, custom tests & much more.