Join the Most Relevant JEE Main 2025 Test Series & get 99+ percentile! Join Now
Search any question & find its solution
Question: Answered & Verified by Expert
$\int \frac{\log \left(x+\sqrt{1+x^2}\right)}{\sqrt{1+x^2}} \mathrm{~d} x=\frac{1}{2}(g(x))^2+C$, (where $C$ is constant of integration.) Then $g(x)=$
MathematicsIndefinite IntegrationMHT CETMHT CET 2022 (11 Aug Shift 1)
Options:
  • A $\log \left(x+\sqrt{1+x^2}\right)$
  • B $\log \left(x+\sqrt{1+2 x^2}\right)$
  • C $\log \left(x-\sqrt{1+x^2}\right)$
  • D $\log \left(\sqrt{1+x^2}\right)$
Solution:
2486 Upvotes Verified Answer
The correct answer is: $\log \left(x+\sqrt{1+x^2}\right)$
$\int \frac{\log \left(x+\sqrt{1+x^2}\right)}{\sqrt{1+x^2}} \mathrm{~d} x=\int t \mathrm{~d} t=\frac{t^2}{2}+C$
[where $t=\log \left(x+\sqrt{1+x^2}\right)$ ]
$\begin{aligned}
& =\frac{\left\{\log \left(x+\sqrt{1+x^2}\right)\right\}^2}{2}+C \\
& \Rightarrow g(x)=\log \left(x+\sqrt{1+x^2}\right)^2
\end{aligned}$

Looking for more such questions to practice?

Download the MARKS App - The ultimate prep app for IIT JEE & NEET with chapter-wise PYQs, revision notes, formula sheets, custom tests & much more.