Join the Most Relevant JEE Main 2025 Test Series & get 99+ percentile! Join Now
Search any question & find its solution
Question: Answered & Verified by Expert
$\int \frac{x+1}{\sqrt{1+x^2}} d x=$
MathematicsIndefinite IntegrationJEE Main
Options:
  • A $\sqrt{1+x^2}+\tan ^{-1} x+c$
  • B $\sqrt{1+x^2}-\log \left\{x+\sqrt{1+x^2}\right\}+c$
  • C $\sqrt{1+x^2}+\log \left\{x+\sqrt{1+x^2}\right\}+c$
  • D $\sqrt{1+x^2}+\log (\sec x+\tan x)+c$
Solution:
1885 Upvotes Verified Answer
The correct answer is: $\sqrt{1+x^2}+\log \left\{x+\sqrt{1+x^2}\right\}+c$
$\int \frac{x+1}{\sqrt{x^2+1}} d x=\int \frac{x}{\sqrt{x^2+1}} d x+\int \frac{1}{\sqrt{x^2+1}} d x$
Put $x^2+1=t \Rightarrow 2 x d x=d t$, then it reduce to $\frac{1}{2} \int \frac{d t}{t^{1 / 2}}+\int \frac{1}{\sqrt{x^2+1}} d x=\frac{1}{2} \cdot 2 \cdot t^{1 / 2}+\log \left(x+\sqrt{x^2+1}\right)+c$
$=\left(x^2+1\right)^{1 / 2}+\log \left(x+\sqrt{x^2+1}\right)+c .$

Looking for more such questions to practice?

Download the MARKS App - The ultimate prep app for IIT JEE & NEET with chapter-wise PYQs, revision notes, formula sheets, custom tests & much more.