Join the Most Relevant JEE Main 2025 Test Series & get 99+ percentile! Join Now
Search any question & find its solution
Question: Answered & Verified by Expert
$\int \frac{x^2}{1+x^6} d x$ is equal to
MathematicsIndefinite IntegrationTS EAMCETTS EAMCET 2021 (06 Aug Shift 1)
Options:
  • A $x^3+C$
  • B $\frac{1}{3} \tan ^{-1}\left(x^3\right)+C$
  • C $\log \left(1+x^3\right)$
  • D $\frac{1}{1+x^3}+C$
Solution:
1181 Upvotes Verified Answer
The correct answer is: $\frac{1}{3} \tan ^{-1}\left(x^3\right)+C$
Let $I=\int \frac{x^2}{1+\left(x^3\right)^2} d x$
Put $x^3=z \Rightarrow 3 x^2 d x=d z$
$$
I=\frac{1}{3} \int \frac{d z}{1+z^2}=\frac{1}{3} \tan ^{-1}(z)+C=\frac{1}{3} \tan ^{-1}\left(x^3\right)+C
$$

Looking for more such questions to practice?

Download the MARKS App - The ultimate prep app for IIT JEE & NEET with chapter-wise PYQs, revision notes, formula sheets, custom tests & much more.