Search any question & find its solution
Question:
Answered & Verified by Expert
$\int_{1 / 2}^2\left|\log _{10} x\right| d x=$
Options:
Solution:
2445 Upvotes
Verified Answer
The correct answer is:
$\frac {1}{2}\log _{10}\left(\frac{8}{e}\right)$
$\int_{1 / 2}^2\left|\log _{10} x\right| d x$
$\begin{aligned} & =\int_{1 / 2}^1\left|\log _{10} x\right| d x+\int_1^2\left|\log _{10} x\right| d x \\ & =-\int_{1 / 2}^1 \log _{10} x d x+\int_1^2 \log _{10} x d x \\ & =\frac{1}{\log _e 10}\left[\int_1^2 \log _e x d x-\int_{1 / 2}^1 \log _e x d x\right] \\ & =\frac{1}{\log _e 10}\left(\left[x \log _e x-x\right]_1^2-\left[x \log _e x-x\right]_{1 / 2}^1\right) \\ & =\frac{1}{\log _e 10}\left[\left(2 \log _e 2-2-1 \log _e 1+1\right)\right. \\ & =\frac{1}{\log _e 10}\left[2 \log _e 2-1+1-\frac{1}{2}+\frac{1}{2} \log _e \frac{1}{2}\right] \\ & \left.=\frac{1}{2 \log _e 10} \log _e\left(\frac{8}{e}\right)=\frac{1}{2} \log _{10}\left(\frac{8}{e}\right) \cdot\left(1 \log _e 1-1-\frac{1}{2} \log _e \frac{1}{2}+\frac{1}{2}\right)\right]\end{aligned}$
$\begin{aligned} & =\int_{1 / 2}^1\left|\log _{10} x\right| d x+\int_1^2\left|\log _{10} x\right| d x \\ & =-\int_{1 / 2}^1 \log _{10} x d x+\int_1^2 \log _{10} x d x \\ & =\frac{1}{\log _e 10}\left[\int_1^2 \log _e x d x-\int_{1 / 2}^1 \log _e x d x\right] \\ & =\frac{1}{\log _e 10}\left(\left[x \log _e x-x\right]_1^2-\left[x \log _e x-x\right]_{1 / 2}^1\right) \\ & =\frac{1}{\log _e 10}\left[\left(2 \log _e 2-2-1 \log _e 1+1\right)\right. \\ & =\frac{1}{\log _e 10}\left[2 \log _e 2-1+1-\frac{1}{2}+\frac{1}{2} \log _e \frac{1}{2}\right] \\ & \left.=\frac{1}{2 \log _e 10} \log _e\left(\frac{8}{e}\right)=\frac{1}{2} \log _{10}\left(\frac{8}{e}\right) \cdot\left(1 \log _e 1-1-\frac{1}{2} \log _e \frac{1}{2}+\frac{1}{2}\right)\right]\end{aligned}$
Looking for more such questions to practice?
Download the MARKS App - The ultimate prep app for IIT JEE & NEET with chapter-wise PYQs, revision notes, formula sheets, custom tests & much more.